프런티어과학학부 커뮤니티
아주대학교 프런티어과학학부의 새로운 소식입니다.- 공지사항
-
2024.0808
프런티어과학학부 공지사항입니다.
프런티어과학학부 공지사항입니다.
-
2024.0808
- NEWS
-
2024.1226
이형우 교수팀, 근적외선 광검출 성능 획기적 향상 방법 개발.. 보안∙의료 등 활용 기대
물리학과 이형우 교수팀이 근적외선 광검출기의 광검출 성능을 획기적으로 향상시킬 수 있는 방법을 개발했다. 이에 앞으로 야간 투시와 보안, 바이오 메디컬 분야 등에서 널리 활용될 수 있을 전망이다. 이형우 교수(물리학과∙대학원 에너지시스템학과, 사진 왼쪽)는 SrRuO3/LaAlO3/Nb-doped SrTiO3(SRO/LAO/Nb:STO) 이종접합에서 수 원자층 수준 계면 제어를 통해 근적외선 광검출 성능을 혁신적으로 향상시키는 방법을 개발했다고 밝혔다. 해당 내용은 ‘원자 규모 계면 제어를 통한 복합 산화물 이종접합 기반 근적외선 광검출(Atomic-Scale Interface Modification in Complex Oxide Heterojunctions for Near-Infrared Photodetection)’이라는 제목으로 <ACS nano> 12월호에 온라인 게재됐다. 가천대 엄기태 교수와 한국과학기술원(KAIST) 양용수 교수팀이 함께 연구에 참여했다. 아주대 대학원 석사과정의 유상혁 학생은 제1저자로 함께 했다. 광검출 기술은 입사 광자를 전기 신호로 변환하는 반도체 분야 기초 기술 중 하나로, 다양한 광전자 응용 분야에서 중요하게 활용되고 있다. 특히 근적외선 광검출기는 ▲야간 투시 ▲보안 ▲의료 진단 - 바이오 메디컬 이미징 등 여러 분야에 활용될 수 있어 많은 관심을 받고 있다. 근적외선(Near-Infrared, NIR) 광검출은 파장이 대략 850nm~ 155nm 인 빛을 검지하는 기술이다. 눈에 보이는 가시광선 영역이 아니기 때문에 일반적으로 제어가 어렵고, 더욱이 장파장 영역이라 에너지가 낮아 정밀하게 검출하는 데에 어려움이 있다. 반면, 근적외선 빛은 가시광선에 비해 다른 물질 속으로 더 깊이 통과할 수 있으며, X선이나 UV처럼 부작용을 유발하지 않기 때문에 다양하게 응용될 수 있다. 또한, 장파장 빛인 만큼 산란이 적고 더 먼 거리까지 정보를 전달할 수 있다는 장점이 있어, 정밀 측정만 가능하다면 ▲광섬유 네트워크 통신 ▲생체 조직 내 바이오 이미징 기술 ▲야간 감시 장비 및 야간 적외선 시각화 ▲얼굴 인식 및 보안 분야 등에의 적극적인 활용이 가능하다. a. SRO/LAO/Nb:STO 기반 근적외선 검출 소자의 모식도 b.해당 소자를 이용한 광검출 측정 모습 c. 광검출 중 소자의 온도 변화 측정 결과: 온도 변화가 미미함을 통해 일반적인 열전자 기반의 광검출 방식이 아님을 입증했다 현재 활용되는 대부분의 근적외선 광 검출 기술은 실리콘 또는 수은-카드뮴-텔루라이드(HgCdTe) 등의 II-VI 화합물 반도체를 이용한다. 하지만 실리콘의 경우 낮은 흡수 계수로 인해 근본적 성능 한계가 존재하며, HgCdTe화합물 반도체의 경우 낮은 재료 균일성과 화학적 불안정성이 문제로 남아있다. 이러한 한계를 극복하고자 쇼트키(Schottky) 접합 기반의 근적외선 광 검출기가 주목받기 시작했다. 여기에 활용되는 복합 산화물 이종구조는 쇼트키 장벽과 내부 전위 프로파일을 정밀하게 조정할 수 있어 매우 유망한 전자 소재로 볼 수 있다. 아주대 연구팀은 극성(Polar) 단층 LAO를 삽입해 계면에서 쇼트키 장벽을 최적화해 근적외선 광(파장 850nm) 조사 시 ~1.1 mA/W의 높은 감응도를 유지하면서, 암전류(dark current)는 수 pA 수준으로 억제할 수 있었다. 이러한 원자층 수준 계면 제어를 통해 감응도를 최대 1371%까지 향상시키는 데 성공했으며 지속성 광전도성(Persistent photoconductivity, PPC)을 통해 광전도의 점진적인 제어가 가능함을 입증했다. 이 같은 성능 향상은 계면에 삽입한 극성 LAO층을 이용해 터널 장벽의 높이와 폭을 근적외선 검출에 적합한 형태로 제어했기 때문이다. 연구팀은 또 추가로 개발한 SRO/LAO/Nb:STO 기반 광소자를 이용해 근적외선 광신호의 공간 이미징 및 신경 모방 소자 구현 가능성을 실험적으로 입증했다. 이형우 교수는 “이번 성과를 통해 복합 산화물 이종구조 기반의 고성능 근적외선 광 검출기 개발이 가능해질 것”이라며 “관련 광전자 응용 분야에서 산화물 이종접합이 매우 큰 잠재력을 가지기에 야간 투시나 보안, 바이오 메디컬 이미징 등의 분야에서 널리 활용할 수 있을 것으로 본다”라고 말했다. 이번 연구는 교육부 주관 대학기초연구소(G-LAMP) 사업과 한국연구재단의 우수신진연구, 기초연구실지원사업(BRL)의 지원을 받아 수행됐다. 아주대 연구팀이 개발한 소자로 광검출 중인 모습
-
2024.1218
물리학과, 학과 설립 40주년 기념 '물리인의 밤' 열어
물리학과가 학과 설립 40주년을 기념해 ‘물리인의 밤’ 행사를 열었다. 재학생과 졸업생, 교수진 170여명이 함께 자리했다. 지난 달 16일 연암관에서 열린 이번 행사는 ▲졸업생 특강 ▲재학생 발표 ▲이순일 교수 은퇴 세션 ▲강진모 장학금 수여로 진행됐다. 본 행사 이후 연암관 로비에서 참석자들이 함께 어울려 식사하고 대화하는 단합의 시간이 이어졌다. 졸업생 가운데 김기태 동문(Mind Golf CEO, 90학번)과 김유석 동문(Quandela Korea 대표, 94학번)이 무대에 올라 후배들에게 전하고 싶은 이야기를 풀어냈다. 김기태 동문은 “자신이 좋아하는 일을 하면 자연스럽게 롱런할 수 있다”며 “대학은 전공 학문 만을 공부하는 곳이 아니라, 여러 다양한 학문 그리고 사람을 만나는 장”이라고 전했다. 김유석 동문은 “선배란, 여러분이 사회에 진출한 뒤 주저없이 도움을 청할 대상이 되어야 한다”며 “그렇기에 오늘의 행사가 가지는 의미가 크고, 여러분이 더 많은 사람들을 만나고 교류하며 성장하기를 바란다”라고 말했다. 재학생 중에는 24학번 학과 대표와 부대표인 정우택, 김가민 학생이 무대에 올라 올 한 해 진행한 학생 활동에 대해 소개했다. 이날 행사에서 특별히 우리 대학에 기부를 이어오고 있는 물리학과 출신 동문 기업인 강진모 회장이 직접 참석, 학생들에게 장학금을 전달했다. 물리학과 학생회장단(회장 안태현, 부회장 백새연)이 대표로 300만원의 장학금을 받았다. ICT 서비스 전문 아이티센(ITCEN)그룹을 이끌고 있는 강진모 회장은, 물리학과 88학번 동문으로 ‘개교 50주년 기금’ 등으로 2억원 이상을 아주대에 쾌척했다. 한편 내년 2월말 정년퇴임하는 이순일 교수는 무대에 올라 제자와 후배 교수들에게 조언과 당부를 남겼다. 지나온 시간 및 경험에 대한 소회와 함께 이 교수는 “잘못되었다 생각하는 것에 대해 가만히 있기 보다 분노할 줄 아는 지성이 되라”며 “두려움을 갖지 말고 도전하길 바란다”라고 전했다. 물리학과 이순일 교수, 내년 2월 정년퇴임을 앞두고 무대에 올라 소회를 전했다
-
2024.1218
임준원 교수팀, 에너지 하베스팅 활용 열전소자의 新 양자기하학적 원리 규명
우리 학교 임준원 교수 연구팀이 열전소자의 효율을 결정하는 파워 팩터에 대한 새로운 양자 기하학적 원리를 규명해냈다. 이에 친환경·고효율의 에너지 하베스팅 핵심 기술로 활용될 수 있을 전망이다. 임준원 아주대 교수팀은 열전소자의 효율을 나타내는 파워 팩터가 고체 블로흐파의 양자 기하학적 특성에 의해 조절됨을 최초로 규명해냈다고 밝혔다. 해당 내용은 ‘힐버트-슈미트 거리에 의해 구동되는 열전 수송(Thermoelectric transport driven by the Hilbert-Schmidt distance)’이라는 논문으로 글로벌 다학제 SCI 저널인 <어드밴스드 사이언스(Advanced Science)> 11월호에 실렸다. 아주대 임준원 교수(물리학과), 중앙대 김건우 교수(물리학과), 일본 도쿄대 오창근 학생(박사과정)이 함께 연구에 참여했다. 열전소자(thermoelectric module)는 열에너지와 전기에너지 사이의 직접적 변환을 매개하는 역할을 하며, 이에 에너지 절감을 필요로 하는 여러 산업 분야에서 주목받고 있다. 연료를 사용하지 않는 친환경 에너지 기술인 ‘에너지 하베스팅(Energy Harvesting)’의 핵심 기술 중 하나도 바로 열전소자다. 에너지 하베스팅은 태양광, 열, 진동, 바람과 같은 자연적 에너지원으로부터 발생하는 에너지를 모아 전기에너지로 바꿔 사용하는 기술이다. 공장·발전소의 폐열을 활용하거나 자동차의 폐열을 전기로 바꾸고, 전원을 연결하기 어려운 웨어러블 기기나 사물인터넷(IoT) 분야의 에너지원으로 사용될 수 있음은 물론이다. 현재 차량과 냉장고·정수기 같은 소형 가전 등에 일부 활용되고 있는 열전소자를 실생활에서 보다 폭넓게 응용하기 위해서는 경제성뿐 아니라 소자에 사용되는 소재의 에너지 전환 효율을 최대로 높이는 것이 가장 중요하다. 열전소재는 1950년대 이후 크기가 큰 벌크 소재 중심으로 발전했는데, 열전 효율은 전기전도도가 높으면서 열전도도는 좋지 못한 물질이 이상적이므로 이 조건을 가장 잘 만족시키는 전자구조를 지닌 물질을 찾는 것이 주된 방식이었다. 2000년대 이후에는 나노 및 박막 기술을 활용해 인위적으로 합성된 물질에서 벌크 소재를 뛰어넘는 고효율 열전소재들을 개발하기도 했다. 지금까지 개발된 열전 효율 향상 방법론들은 궁극적으로 고체의 전자 및 포논(phonon) 띠(band) 구조를 엔지니어링하는 일로 귀결된다. 하지만 최근에서야 이러한 띠 구조 뒤에 숨어 있는 고체 내 전자 파동함수의 기하학적 구조가 물성에 큰 영향을 끼친다는 사실이 밝혀졌고, 지금까지 파동함수의 기하학적 특성과 열전 효율 사이의 관계에 관한 연구는 수행된 적이 없었다. 이에 아주대 공동 연구팀은 열전 효율을 결정하는 파워 팩터(power factor)에 주목, 파워 팩터가 고체 블로흐파의 양자 기하학적 특성인 양자 거리(quantum distance)에 크게 의존함을 규명해냈다. 특히 고체의 띠 구조가 페르미 준위 근방에서 교차점을 형성할 경우, 교차점 근방의 양자 거리의 최대값이 파워 팩터를 결정하며, 이 최대 양자 거리의 값을 증가시키면 파워 팩터가 최대 두 배까지 향상될 수 있음을 보였다. 공동 연구팀은 이번 연구를 통해서 볼츠만(Boltzmann) 수송 이론을 양자 기하학적으로 재해석해 고체 내 전자의 산란율을 양자 거리를 이용하여 표현할 수 있음을 일반적으로 보였다. 또 산란율 공식을 기반으로 전기 및 열전도도와 열전 파워 팩터 등이 블로흐파의 양자 거리로부터 도출될 수 있음을 이론적으로 규명했다. 공동 연구팀은 새롭게 정립된 이론을 통해 띠 구조가 동일한 물질이라도 양자 거리 특성이 다르면 열전 효율도 크게 변할 수 있음을 보였다. 임준원 아주대 교수는 “이번 연구를 통해 기존 연구들과 본질적으로 다른 열전 효율 향상 방법론을 제시한 셈”이라며 “앞으로 후속 연구를 통해 양자 거리 조절에 기반을 둔 신개념의 열전 신소재 개발에 적용될 수 있을 것”이라고 전했다. 김건우 중앙대 교수는 “학계에서 친숙하게 접해온 수송현상 속에서 양자물질의 기하학적 정보가 존재함을 발견했다”며 “앞으로 웨어러블 기기의 냉각 및 발전 소자와 같이 실생활에 도움이 되는 응집물리 이론 연구와 실험 연구의 협업을 기대한다”라고 덧붙였다. 우리 학교 임준원 교수는 앞서 저명 글로벌 저널 <네이처(NATURE)>에 ‘양자 거리와 평평띠의 비정상 란다우 준위(Quantum distance and anomalous Landau levels of flat bands)’를 발표하는 등 양자 거리와 관련한 연구를 이어 왔다. 이번 연구는 선도연구센터지원사업, 중견연구자지원사업과 대학기초연구소사업(G-램프) 사업 등의 지원을 받아 수행됐다. 아주대 공동 연구팀의 연구 성과를 설명한 이미지. 고체 전자 파동함수의 양자 거리를 조절해 열전 효율을 증가시킬 수 있음을 규명했다 * 위 사진 - 왼쪽부터 아주대 임준원 교수(물리학과), 중앙대 김건우 교수(물리학과), 일본 도쿄대 오창근 학생(박사과정)
-
2024.1226